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We check claims for a generalized central limit theorem holding at the Feigenbaum �infinite bifurcation�
point of the logistic map made recently by Tirnakli et al., Phys. Rev. 75, 040106�R� �2007�; this issue, Phys.
Rev. 79, 056209 �2009�. We show that there is no obvious way that these claims can be made consistent with
high statistics simulations. Instead, we find other scaling laws for related quantities.
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One of the main results in mathematical statistics is the
Gaussian central limit �CL� theorem. It holds for sequences
of i.i.d. �independent identically distributed� random vari-
ables with finite variance and says that a sum over N such
variables tends for N→�, after shifting by an amount O�N�
and rescaling by N−1/2, to a Gaussian. Similar CL theorems
hold for i.i.d. variables with infinite variance, for which the
limit distribution is under suitable conditions Levy stable �1�.

Actually, the conditions for which these CL theorems hold
can be substantially relaxed. They still hold for correlated
variables provided the correlations are short range, and at
least the Gaussian CL theorem holds also stationary chaotic
processes, i.e., when successive variables are related by a
deterministic equation xi+1=F�xi�, provided the map F�x� is
mixing and has positive entropy �2�.

In two recent papers �3,4�, it was claimed that this well-
known result can be generalized to maps with zero entropy
which lead to sequences with long-range correlations. In par-
ticular, these authors studied in �3� the logistic map at the
Feigenbaum �infinite bifurcation �5�� point. In �4� they stud-
ied this map near �but not at� the Feigenbaum point. Al-
though their results in �4� contradict those in �3� and al-
though they actually did not study CL behavior at all in Ref.
�4�, they did not revoke their previous claim and concluded
again that an anomalous CL theorem holds at the Feigen-
baum point. In the following, I will try to clarify this prob-
lem.

Let us consider trajectories xi+1= fa�xi� of length N, with
fa�x�=a−x2 and with randomly distributed x0. The Feigen-
baum point is at a=ac�1.401 155 189 092 050 6. . .. Follow-
ing �3�, we study sums Y =�i=N0+1

N0+N xi and their distributions at
a=ac and for large N. Here, N0 is the length of a possible
discarded transient.

Denoting by �Y� the average over x0, the claim in �3� is
that the centered and suitably rescaled sums

y = N��Y − �Y�� , �1�

are distributed according to a “q Gaussian”

p�y� �
1

�c + y2�b �2�

for �=1.5, with b	4 /3 and c	0.1 �6�. Moreover, it is
claimed that the same distribution, with identical � ,b, and c,
is found for the modified logistic map fa,z�x�=a−xz with z
=1.75 and z=3. If true, this universality would be remark-

able. In a subsequent publication �4�, the authors presented
additional details which supposedly supported these claims.
Unfortunately, none of them seem to be correct.

Transients are not discussed in �3� �but in �4��. Since the
transient dynamics of the Feigenbaum map at a=ac is uni-
versal �5,7� and since using N0�0 might ruin the scale in-
variance by introducing a new time scale, one might con-
clude that N0=0 was used there. But this is not true �private
communication� and transients have actually been discarded
both in �3,4�.

Let us nevertheless start by discussing first the case N0
=0. It is straightforward to do the necessary simulations to
estimate p�y�. In all simulations, x0 was uniformly distrib-
uted in �0,a�. Results, for several values of a at and slightly
above ac, are shown in Fig. 1. Indeed, in this figure, histo-
grams of the nonrescaled and nonshifted sums Y, for N
=16384, are shown. Similar results were obtained for other
values of N. They have markedly different behavior left and
right of the central peak Yc	86 333. For Y �Yc, we observe
a very steep rise P�Y�
e0.86Y, while the decrease for Y
�Yc is much more gentle P�Y�
e−0.17Y. Superposed on both
exponentials are periodicities which obviously result from
the hierarchical structure of the Feigenbaum attractor.

Figure 1 is very different from the results shown in �3�,
suggesting that indeed transients have been discarded there.
We stress again that this would not have been needed for
obtaining universal results and that the results shown in Fig.
1 are universal.
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FIG. 1. �Color online� Histograms of Y for N=16 384 and for
four values of a at or slightly above criticality.
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In the rest of this Brief Report, we shall discuss the case
N0�0. If one does so and hopes for scale invariance, one has
to take N0�N. Otherwise one introduces a time scale in the
supposed scaling regime. At least for one simulation it is
mentioned in �4� that N0=4096 was used. In lack of better
information, we shall assume that the same N0 was used also
in all other simulations of �3,4�, although it does not satisfy
the criterium N0�N. Moreover, the 12-digit approximation
ac	1.401 155 189 092 is cited in �4�, and we assume that
the same approximation was used in �3�. With these param-
eters, we were able to reproduce Fig. 4 of �3�, but it is clear
that one should be careful in accepting this as the true limit
behavior. We have therefore repeated these simulations with
much longer transients �N0=219�, higher precision for ac �18
digits �8��, and higher statistics ��108 starting values�.

The results shown in Fig. 2 are qualitatively similar to
Fig. 4 of �3�, but they are definitely not described by Eq. �2�,
even if we disregard the strong fluctuations resulting from
the structure of the Feigenbaum attractor �see also Fig. 5�. In
order to minimize the visual effect of these fluctuations, we
plot in Fig. 3 the cumulative distributions. We also replace
the value 1.5 of the exponent � �see Eq. �1�� by �=2. We see
that these cumulative distributions are reasonably well fitted
by

P�y� = �
y

�

dxp�x� 	 e−��ln y/N	�, �3�

with a quadratic scaling function ��z� and with 		0.05.
Although the results of Ref. �4� supposedly confirm the

claim of q Gaussianity made in �3�, a very different limit is
actually considered in Ref. �4�. Instead of using a=ac and
N0�N→�, the authors there consider the case where N0 is
not much larger than N, where a�ac, and

N 
 �a − ac�−2
 � 1. �4�

Here 
=ln 2 / ln �, and �=4.669. . . is one of the Feigenbaum
constants �5�. In this region the Feigenbaum attractor con-

sists of n=2k “bands” with k	�a−ac�1/� �5,7�. Orbits on it
jump periodically between the bands but are chaotic within
each band. On each band, the n-fold iterated map fa

�n� is
mixing. Thus Y is a sum over n series of random variables,
each of which shows normal CL behavior for N→�. There-
fore, Y also shows normal CL behavior in the limit N→�,
n=const. It is for this reason that this limit is replaced in �4�
by N�n2→�. Strictly speaking, we are then no longer deal-
ing with �normal or abnormal� the central limit behavior at
all. Nevertheless, it is of interest to study the asymptotic
behavior.

Before we go to the numerics, we should point out that
the limit N�n2→� corresponds, in renormalization-group
language, to a cross-over region between two different scal-
ing limits where a�ac �Gaussian� and a=ac �non-Gaussian
illustrated by Figs. 2 and 3�. In general, one does not have
simple analytic behavior in such cross-over regions. If it is
true, as is claimed in �3,4�, that the behavior is given—at
least for one particular value of N /n2—by a simple formula
such as Eq. �2�, this would be extremely surprising.

In the following we shall, for definiteness, only deal with
band-merging points, where n=2k bands merge into n /2
bands as a is increased; but similar behavior is found also for
other values of a. Indeed, when looking at distributions of y
for large n, N�n, and N0�n, one finds heavy-tailed distri-
butions �see Fig. 4�. But as closer inspection shows, they are
in general not described by Eq. �2� �see Fig. 5�. Apart from
the steps and discontinuities at large y which might recede to
infinity in the limit indicated above, the main deviations are
�i� a systematic downward curvature in Fig. 5 for intermedi-
ate to large y, seen most clearly in the curve for n=4096; �ii�
deviations from straight-line behavior at very small y, both
for n��N and for n��N. In a narrow region of N /n2, the
data are in rough agreement with Eq. �2� for small y, but
there is no value of N /n2 where a linear fit in Fig. 5 would be
acceptable.

In view of this, it seems very unlikely that the rough
agreement with Eq. �2� is more than a numerical coinci-
dence. The data shown in Figs. 4 and 5 of �3� are definitely
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FIG. 2. �Color online� Histograms of y for a=ac, N0=52 4288,
and for N=256, 2048, 16384, and 131072. Notice that for all curves
N0�N, that for all curves the accuracy of ac should be sufficient,
and that round-off errors should be negligible.
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FIG. 3. �Color online� Cumulative distributions corresponding
to Fig. 2 �and to similar curves for other values of N� plotted against
ln y, with �=2. Without changing the value of the exponent � from
1.5 to 2, the curves would collapse even less.
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not well fitted by Eq. �2� �not even for very small y /
�. We
might add that equally good �or bad� fits would be obtained
with Levy stable distributions �1�, which moreover might
have more theoretical justification. It might be that the sums
leading to Y can be reformulated by splitting them into two
steps, Y =�ixi=�I�i�Ixi, such that the partial sums �I
=�i�Ixi are weakly correlated and have heavy-tailed distri-
butions. In view of the above remarks about cross overs, we
do not consider this as very likely, but even such a remote
possibility of justification seems absent for Eq. �2�.

Some final remarks: �i� the behavior described here is
seen only when N is a power of 2. Otherwise, one observes
completely different behavior. �ii� The fluctuations of Y are,
for N0 ,N�n�1, tiny. All structures shown in Figs. 4 and 5
�including the tails� extend, before centering and multiplying
by N�, over a range 
Y �10−3. For N=65 536, this is to be
compared to �Y�	34 533, i.e., all relative fluctuations are
smaller than 3�10−8 �9�. The reason for this is that the mo-
tion on an n-band attractor with large n is extremely regular,

with the chaos confined to very narrow bands. Thus, if a
generalized CL theorem holds for this problem in any sense,
it is completely unobservable in any experimental situation.

�iii� Since the phenomenon illustrated in Figs. 4 and 5
seems to describe corrections to the scaling limit of the
Feigenbaum map, it is not clear how much it depends on the
original map where one starts from and on the distribution of
x0. The only phenomenon discussed in this Brief Report
which has a realistic chance to be experimentally accessible
and is likely to be universal is the behavior shown in Fig. 1.
It is dominated by chaotic transients and is very far from
anything described in Refs. �3,4�.
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FIG. 4. �Color online� Distributions of y /�var�y�, normalized to
p�0�=1, for various values of N and n, where a is set to the n
→n−1 band-merging point. In all cases, N0�16 384. Similar re-
sults were obtained also for other values of a. Notice that the sta-
tistics in any curve of this figure is at least ten times higher than in
any of the curves in �3,4�.
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FIG. 5. �Color online� Distributions of y /�var�y� for N
=65 536 normalized to p�0�=1 plotted against y2+const on a log-
log plot. As in Fig. 4, long transients �N0=65 536 in most cases�
have been discarded, and the control parameter a of the logistic map
is chosen as the n→n /2 band-merging point. According to Eq. �2�,
one would expect straight lines with slopes −b. Apart from the
rather unsystematic deviations at large y which could be effects
which vanish in the limit N�n→�, one sees a systematic down-
ward curvature for intermediate y and strong systematic upward
�downward� curvatures for n��N�n��N� at very small y. Notice
that one has two curves for each n: one for y�0 and one for y
�0. The case a=ac plotted differently in Fig. 3 corresponds to the
limit n→�.
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